Libmonster ID: U.S.-596
Author(s) of the publication: Rudolf BALANDIN

by Rudolf BALANDIN, geologist

Work of prominent scientists offers an example, if not to be emulated, then at least scrutinized and analyzed. That fully applies to an extraordinary personality like Academician G. Gamburtsev, a geophysicist and a pioneer of seismic survey in Russia; this 100th anniversary is commemorated by a recently published book (A. G. Gamburtsev, N. G. Gamburtseva. Grigory Alexandrovich Gamburtsev, 1903 - 1955. Moscow, Nauka Publishers, 2003. 300 pages).

Back in mid-1700s Academician Mikhailo Lomonosov wrote: "Great is the challenge to reach with mind's eye into the earthly bowels, which the human hand and eye are forbidden from probing by nature; to wander with thought in the abyss, to penetrate with reason through narrows and bring out into the sun light things and deeds immersed in the eternal night." He referred to geological studies, the surface and mining data of which are the acid test of what is going on at relatively small depths. However, practical applications require most accurate data, while theory would be incomplete without the knowledge of the composition and properties of subsoil, inaccessible to boring, especially so, since focuses of destructive earthquakes are often located right there. The reason why so valuable are the geophysical methods facilitating instrumental probing of the earthly bowels with mind.

So, what are the qualities a scientist should possess to make a substantial headway in an area requiring equal knowledge of mathematics and physics, earth science and technology?

As for Gamburtsev, he apparently had no good reason for choosing the profession rare and odd in the early 1900s. His grandfather was a nobleman who took part in the Crimean War of 1853 - 1856 and retired in the rank of major general. His father was

Pages. 31


not an officer, and his mother came from a military family and graduated from the Institute of Noble Maidens.

As a Moscow gymnasium student Grigory was keen on mathematics. He found it easier to draw formulas himself rather than memorize them. Hardly had he chosen his specialty as 1917 broke out. Having finished a co-operative school he had to work as a bookkeeper at the Tsentrosoyuz (a consumer cooperation organization) to earn a calm and comfortable living. But the 16-year-old lad was striving not for comfort but for knowledge. He enrolled in the physical laboratory of the Free (non-government) University named after Shanyavsky to attend lectures of the head of the laboratory, the author of the ion theory of living cell excitation Academician P.Lazarev who had a remarkable range of scientific interests.

Soon Gamburtsev joined the Higher Military Camouflage Academy of the Workers and Peasants Red Army and simultaneously entered the faculty of physics and mathematics of the Moscow University. At the Physical Institute headed by P. La- zarev he conducted a research in optics (light absorption and dispersion in turbid media). At the age of 20 he wrote an article "On the Problem of Sea Color Index" (published in 1924) of which just as of another two of his works twenty years later Academician S. Vavilov, the founder of the Russian school of physical optics, would give such an opinion: "Gamburtsev's optical works, written a while ago, are still quite viable. They reveal the author's outstanding skill in addressing complex mathematical and experimental tasks."

Still another evidence of the young scientist's acclaim is a photo dating back to 1924, portraying him in the company of two prominent colleagues, the Indian physicist Chandrasekhara Raman (1930 Nobel Prize) and the Soviet geo-physicist, founder of sea physics V. Shuleikin (Academician since 1946). It might seem that Gamburtsev's "scientific baptism" took place and all he had to do was go on with so successful a quest preparing a thesis. However, he developed interests directly related to practical tasks of economics. In 1923, Grigory Alexandrovich joined the geophysical team of the Special Commission for the Study of the Kursk Magnetic Anomaly (KMA). He engaged in field work decoding gravimetric survey data, was carried away by new methods of studying the earth crust structure which in this country were first applied in full scope at KMA. Starting from 1925 he published one article after another devoted to geophysical studies of the anomaly and interpretation of instrumentally obtained materials. Incidentally, some of the instruments, integrators, quick and simple to use for certain gravimetric and magnetometric functions, were designed by Gamburtsev himself.

From 1930 to 1932 Gamburtsev worked as the director of a seismological expedition and a consultant of the KMA geologic survey trust, combining that with the position of Senior Assistant with the Institute of Physics and Biophysics of the USSR

Pages. 32


People's Commissariat of Health. Together with Academician Lazarev they developed a comprehensive seismo-gravitation method that was destined to become key to the study of the deep structure of the earth crust and upper mantle. That method expedited the discovery in this country of several major mineral reserves, including those of iron ore and oil.

Academician V. Strakhov later gave his appraisal of Gamburtsev's activities: "Just a very narrow circle of outstandingly gifted personalities ever managed to work in several areas of geophysics so as to leave inerasable trace in each of them. G.Gamburtsev, no doubt, belongs to them."

V. Shuleikin reminisced: when the gifted experimenter, fresh from the Moscow University, was building his first handy and elegant field seismograph, none could even guess that his hands were molding a new field of applied geophysics-exploration seismology. In 1937 - 1938 Gamburtsev devoted a monographic textbook to this extremely important field, which for long became a desk book of specialists.

Working in the Glavneft system he consulted numerous geophysical teams in Baikal area, Urals, Northern Caucasia, Ukraine, Caspian Sea basin, Preduraliye, Azerbaijan; he invented a new type of electric seismograph, developed an original methodology of extracting and analyzing reflected seismic waves generated by artificial earthquakes (explosions) * .

In 1938 Academician Otto Schmidt, Director of the USSR AS Institute of Theoretical Geophysics, invited the young scientist to organize a section of physical methods of mineral exploration. The group created by Grigory Alexandrovich was small but worked rather fruitfully. It pioneered the correlation method of wave refraction which yielded supplementary data about the subsoil structure in the process of mineral


* See: D. Fyodorov, "Deep Seismic Studies: Is It Worth It?", Science in Russia, No. 6, 1999. - Ed.

Pages. 33


reserve exploration. At the same time research in the field of deep seismic probing of lithosphere commenced. With that purpose experiments were conducted near Serpukhov (Moscow area) in the course of which, at the explosion of relatively small charges waves from the depths of 15 - 18 km were for the first time registered.

The reminiscences of the time are further expanded by Academician V. Keilis-Borok, a major expert in global seismology and tectonics: "My first impressions of Gamburtsev date back to the early 1940s... when he engaged in seismic explorations from the physical standpoint and tested the idea of copying the phase correlation concepts from reflected to refracted waves. Now it is perceived as an obvious technical detail. In fact, then it was revolutionary... In less than a decade the methods developed by the school of Gamburtsev became the practice of seismic exploration."

During the war with Nazi Germany Grigory Alexandrovich was occupied with the oil fields of Bashkiria and Apsheron Peninsula, developed the method of high-frequency seismology for bedded formation studies (the explorations were carried at radioactive mineral fields of Estonia, Central Asia and Ukraine).

... Following the destructive Ashkhabad earthquake of October 6, 1948 Stalin signed a decree on the deployment of studies related to the forecast of such events. Major scientists, and Gamburtsev among them, were put on the problem of predicting seismic calamities (which is still vital). Jointly with S.I. Vavilov, President of USSR Academy of Sciences, they specified the problem proposing to monitor major fore- shocks * . The research was organized and helmed by Gamburtsev appointed Director of the Geophysical Institute (presently the RAS Joint Institute of Physics of the Earth named after Otto Schmidt). The scientist was given the opportunity to resume the improvement of deep seismic probing (DSP): by focusing the reverberations of powerful earthquakes we can probe practically through the entire globe.

In the subsequent years the DSP method was used to obtain data of the structure of lithosphere and mantle. The information laid the basis for numerous charts and profiles, including those of the Kola


* See: V. Muravyov, G. Krasnopevtseva, "Violent Earthquakes: How Predictable?", Science in Russia, No. 6, 2000. - Ed.

Pages. 34


super-deep borehole * . In the process of drilling it was intended to sink through the 7 km of the so-called "granite formation" and cut, for the first time ever, into the basalt (they were distinguished by the speed of seismic waves passage). However, the latter is still not encountered, although over 12 km have already been bored. According to the geophysicist N. Pavlenkova: "That was not a big surprise for DSP experts, since by that time they had revised materials of the Baltic plate... However, among geologists and other specialty geo-physicists the mismatch between the projected profile and the boring data produced a shock... That was a powerful blow at the DSP prestige, all earlier constructions were questioned, as a result, the scope of the method's application in research shrank."

But the alarm proved to be false. The identified border does exist, but is stipulated not by the change of the rock composition, but by the change of its physical properties: substantial increase of porosity and cleavage and circulation of solutions in these zones. Hence, the error was committed by interpreters of seismic parameters, who assumed the theoretical notion of three-layer structure of the continental crust (sedimentary, granite and basalt horizons). Such model conformed to the broadly proliferated global plate tectonics ** . Therefore, the negative result yielded by the super-deep boring proved to be extremely significant, primarily, in terms of rationalizing the materials produced by DSP.

Of course, many of Gamburtsev's developments now belong to the history of science and technology. But we can still draw on the example of his fruitful creative life. He worked in full accord with Lomonosov's maxim: "To draw theory from observations, to correct observations through theory." And one more: Grigory Alexandrovich was an estimable representative of the now relict generation of Russian intellectuals whole-heartedly devoted to their native country and their cause.


* See: V. Kazansky et al., "Super-Deep Borehole on Kola: Well of Discoveries", Science in Russia, No. 5, 1998. - Ed.

** See: V. Trubitsyn, "Global Plate Tectonics: New Turn?", Science in Russia,, No. 2, 2003. - Ed.

 


© libmonster.com

Permanent link to this publication:

https://libmonster.com/m/articles/view/THE-INNER-VOICE-OF-THE-EARTH

Similar publications: LUnited States LWorld Y G


Publisher:

Libmonster OnlineContacts and other materials (articles, photo, files etc)

Author's official page at Libmonster: https://libmonster.com/Libmonster

Find other author's materials at: Libmonster (all the World)GoogleYandex

Permanent link for scientific papers (for citations):

Rudolf BALANDIN, THE INNER VOICE OF THE EARTH // New-York: Libmonster (LIBMONSTER.COM). Updated: 10.09.2018. URL: https://libmonster.com/m/articles/view/THE-INNER-VOICE-OF-THE-EARTH (date of access: 12.07.2024).

Publication author(s) - Rudolf BALANDIN:

Rudolf BALANDIN → other publications, search: Libmonster USALibmonster WorldGoogleYandex

Comments:



Reviews of professional authors
Order by: 
Per page: 
 
  • There are no comments yet
Related topics
Publisher
Libmonster Online
New-York, United States
406 views rating
10.09.2018 (2132 days ago)
0 subscribers
Rating
0 votes
Related Articles
EVGENY YU. SERGEEV. RUSSIAN MILITARY INTELLIGENCE IN THE WAR WITH JAPAN, 1904 - 1905. SECRET OPERATION ON LAND AND SEA
23 minutes ago · From Ann Jackson
KING AND KINGDOM IN ANCIENT EGYPT (ON THE PROBLEM OF RELIGIOUS CONNOTATIONS)
3 hours ago · From Ann Jackson
Yu. N. TIKHONOV. GREAT POWER POLITICS IN AFGHANISTAN AND THE PASHTUN TRIBES (1919-1945)
Yesterday · From Ann Jackson
POLITICAL SYSTEM OF AFGHANISTAN: IMPACT OF TRIBAL ORGANIZATION
Yesterday · From Ann Jackson
KING AND KINGDOM IN ANCIENT EGYPT (ON THE PROBLEM OF RELIGIOUS CONNOTATIONS)
2 days ago · From Ann Jackson
The main property of the neutral zone of a permanent magnet is the presence of a directional force of motion (magnetic self-motion) with a pronounced attraction, in relation to any main pole of another magnet. When the magnetic field of the neutral zone moves parallel to the magnetization axis of the permanent magnet along the plane of the conducting circuit - an electric current arises.
Catalog: Physics 
2 days ago · From Andrei Verner
Properties of the magnetic field of the permanent magnet the neutral zone is the presence of force directed motion (self-motion magnetic) with a strong attraction towards any main pole of the other magnet (magnetized ferromagnetic primary pole permanent magnet).
Catalog: Physics 
2 days ago · From Andrei Verner
Progress Sums: 1,2,3,4,5..., -1,-2,-3,-4,-5... It can be found using the formula: Sn=(n²a₁+n)/2. Progress Sum: 1,3,6,10,15..., -1,-3,-6,-10,-15... It can be found using the formula: Sn= ((n+a₁)³-(n+a₁))/6. Progress Sum: 1,4,9,16,25..., -1,-4,-9,-16,-25... It can be found using the formula: Sn= a₁(n+a₁)(n²a₁+0.5n)/3. (Where n - is the number of summable terms, a₁ - is the first term of the progression).
Catalog: Physics 
2 days ago · From Andrei Verner
Collision of gas molecules is the source of energy. We assemble a simple galvanic cell (analogous to the well-known battery). We place two electrodes with a potential difference in a NaCl solution. With a fixed load of the external circuit, we discharge the cell. Without breaking the external circuit, we cover the galvanic cell with a glass flask. In the mixture of atmospheric air located under the flask, we increase the percentage of carbon dioxide several times by introducing carbon dioxide under the flask. We record the restoration of the cell charge.
Catalog: Physics 
2 days ago · From Andrei Verner
THE "RUSSIAN" FACE OF ISRAEL: FEATURES OF A SOCIAL PORTRAIT
3 days ago · From Ann Jackson

New publications:

Popular with readers:

News from other countries:

LIBMONSTER.COM - U.S. Digital Library

Create your author's collection of articles, books, author's works, biographies, photographic documents, files. Save forever your author's legacy in digital form. Click here to register as an author.
Library Partners

THE INNER VOICE OF THE EARTH
 

Editorial Contacts
Chat for Authors: U.S. LIVE: We are in social networks:

About · News · For Advertisers

U.S. Digital Library ® All rights reserved.
2014-2024, LIBMONSTER.COM is a part of Libmonster, international library network (open map)
Keeping the heritage of the United States of America


LIBMONSTER NETWORK ONE WORLD - ONE LIBRARY

US-Great Britain Sweden Serbia
Russia Belarus Ukraine Kazakhstan Moldova Tajikistan Estonia Russia-2 Belarus-2

Create and store your author's collection at Libmonster: articles, books, studies. Libmonster will spread your heritage all over the world (through a network of affiliates, partner libraries, search engines, social networks). You will be able to share a link to your profile with colleagues, students, readers and other interested parties, in order to acquaint them with your copyright heritage. Once you register, you have more than 100 tools at your disposal to build your own author collection. It's free: it was, it is, and it always will be.

Download app for Android